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It has been shown recently that the orbit space for the (Sobolev extended) gauge 
group action admits a stratification into Hilbert manifolds. Here it is shown that 
these manifolds carry a natural weak Riemannian structure defined by a metric 
that corresponds to the kinetic part of  the Lagrangian considered in heuristic 
Yang-Mills  theories. 

1. I N T R O D U C T I O N  

Consider a pure Yang-Mills  theory Y modeled in terms of a smooth 
principal bundle P. The space of Yang-Mills potentials of  Y is the affine 
space cr of  connection forms of  P and the gauge group is the group cg of 
the automorphisms of  P leaving fixed the points o f  the base manifold. There 
is a natural right action A/ of  ~ on cs induced by pullback. 

Assume that the base of  P is a (finite-dimensional) compact,  connected, 
Riemannian, oriented manifold and that the structure group of P is a 
compact,  real Lie subgroup of GL(m, C), m >  1. Then for a sufficiently 
large integer k a Hilbert manifold cgk and a Hilbert Lie group ~3 k+l are 
defined, containing, respectively, c~ and ~ as dense subsets. 

By the way they are defined cgk and ~k+l are said to be the Sobolov 
extended space of  connections of  order k and the Sobolev extended gauge 
group of order k + 1. 

The action A/ of  ~ on cr can be extended by continuity to a smooth 
action J// of  (~k+l on ~k. 

It is reasonable to interpret the elements of  ~k as defining the field 
configurations of  Y, regarded as a classical field theory. Then the gauge 
invariance of the theory implies that any two elements of  ~k lying in the 
same orbit for the action of  ~k+l on (~k represent the same configuration. 
Thus, one is led to conjecture that the quotient space ~k/~k+~ or some 
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subset of  it can be taken as the "true" configuration space of Y, in view of 
a possible Lagrangian-Hamiltonian formulation of Y (see Daniel and 
Viallet, 1980; Babelon and Viallet, 1981). For this it is necessary that 
cck/~dk+l or a suitable subset of it can be given a smooth quotient manifold 
structure and even a (possibly weak) Riemannian structure. This is possible 
if (Ok is replaced by a certain ~k+t-invariant subset qg~ c qCk (the space of 
generic connections) and cgg+~ by the quotient group cgk+l/Z, where Z is 
the center of ~k*~, which is a finite group if one assumes that G is semisimple 
[see Narasimhan and Ramadas (1979) for the case of a trivial principal 
bundle and Mitter and Viallet (1981) for the general case; compare also 
Singer (1978) and Atiyah et al. (1978)]. A more general result has been 
given in Kondracki and Rogulski (1983) by showing that the topological 
space ~k/q3k+~ admits a stratification 6 ~ into Hilbert manifolds. In more 
detail, one has a partition of ~k into a countable family (qr of ~k+~_ 
invariant submanifolds and for each t~ the orbit manifold (ok/~k§ exists. 

k ~0 k is an open, dense subset of ~g. Moreover, for a convenient ao, cr 0 = 
The natural question at this stage is whether one can give the quotient 

manifolds qgk/(gk+~ a (possibly weak) Riemannian structure. This structure 
should be natural from the mathematical viewpoint and it should be physi- 
cally meaningful when we regard (r as the configuration manifold 
of a Yang-Mills theory. 

In this paper we give a positive answer to the question by introducing 
on the ~/cgk*~ and in particular on qgk/~dk+~ a weak metric, which 
corresponds to the "kinematic" part of the Lagrangian considered in the 
heuristic formulation of Yang-Mills theories. The content of this paper is 
as follows. We first review in some detail the definitions and the results 
sketched above [in a formulation substantially equivalent to the one in 
Kondracki and Rogulski (1983)]. This will give us the appropriate setting 
for the construction of weak matrices on the orbit manifold. The paper is 
concluded by a preliminary study of the geodesic structure of the generic 
orbit manifold. 

2. THE GAUGE GROUP AND ITS ACTION ON CONNECTION 
F O R M S  

The kinematics of a Yang-Mills theory can be formulated by assuming 
as basic object a smooth principal bundle P = (R, p, M, G) with total space 
R, projection p, base manifold M, and structure group G. 

In this paper we shall assume that M is a finite-dimensional, connected, 
compact, Riemannian, oriented manifold and G is a compact, real Lie 
subgroup of GL(m, C) for some m > 1. The Lie algebra g of G is always 
identified with a real Lie subalgebra of M(m, C). 
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The fundamental concepts of  the theory are those of the space of 
connections (physically the space of Yang-Mills potentials) and of the 
gauge group. There are several (algebraically) equivalent mathematical 
objects describing these notions. The most directly related to P are: (a) for 
the gauge group, the group cg2 of  the M-automorphisms of P; and (b) for 
the space of  connections, the set ~2 of principal connection forms of it,. 

~2 is in fact an affine space contained in the vector space of g-valued 
smooth 1-forms on R. 

Physically the gauge group is introduced in the form of a group of 
transformations of the Yang-Mills potentials under which the theory is 
invariant. 

Correspondingly, in the mathematical model, we have a right action 

~ 2  ] (~2 X ~2 "'+ (~2" (o~,f),,~.w.f=f*(o~) 
of ~2 on ~2, induced by pullback. 

We now define two sequences of objects isomorphic respectively to ~2 
and to qg2. Consider first the subset ~q; of C~(R, G) consisting of the maps 
h : R ~ G satisfying 

h(r.a)=a-lh(r)a, rcR, a~G 

rg~ is a group by pointwise multiplication and there is a unique group 
(anti)isomorphism/31:<g2--+ ~ such that 

r./3~(f)(r) = f ( r ) ,  r e  R 

The next step in our sequence requires the following notations. Let 0//be 
the set of the open subsets U ~ M, U # •, such that P and M are trivializable 
on U. For each U e  a// let s  be the set of smooth sections of  P over U 
and let s = U u ~  s  We shall denote by dom o- the definition set of a 
o- c s Consider the subset qJi of II~:~ C~~ o-, G) consisting of the 
families (~o)~= such that if or, c r ' cEu ,  then 

(i) ~ l  u = r 
(ii) ~o,=A-lff~A 

where A is the unique smooth map U--+ G such that ~r'= ~rA. The group 
cg2 is a group for the composition (ff~)(~'~,) = (~'~g~,) and there is a unique 
isomorphism/32: ~ - -+  ~ such that 

/32(h)~=hocr, o'EY. 

Similarly, consider the subset ~ of the vector space 1-I~A~(dom or, g) consist- 
ing of families (~r satisfying 

(i) ~ . l  u = s ~ < ~  
(ii) sgo_,=h-lsCo-A +a-~TA 
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for o', c r ' e E u  and or'= cr. h [here we are adopting the notation Ak(U,  F) 
for the vector space of k-forms over an open set U of a manifold with 
values in a finite-dimensional real vector space F].  

It is immediate that ~2 is an affine subspace of I I~Al(dom o,, g) and 
it is well known that the map 

is a bijection and in fact an isomorphism of affine spaces. 
To proceed to the next step, we introduce the associated bundle R x 

~M(m, C) defined by the right operation (a, s) ,~. s-Xas of G in M(rn, C). 
We shall pose F = M(m, C) and we shall denote by EF the above-defined 
associated bundle. F will be always regarded as a real associative algebra. 

It is not difficult to see that E~ is an associative algebra bundle. In 
fact, denoting by r- a the element of  EF corresponding to (r, a) e R x F 
and by PF the projection of EF, we have a natural associative algebra 
structure on each fiber p~l(x),  x e M, such that 

h ( r -  a ) =  r.  (ha) 

r. a+r.  a ' = r . ( a + a ' )  

(r. a)(r. a') = r. aa' 

rep-I(x) ,  h e R ,  a , a ' e F  

Moreover, given a section cre Eu,  with x e U, the map 

{x} • F---~ p~l(x), (x, a),*, o'(x) . a 

is a diffeomorphism and an associative algebra isomorphism. I f  we choose 
for every x e M an element rx Ep-l(x), then the sets rx" G (resp. rx" g) are 
the fibers of  a subbundle Ec  (resp. Eg) of  EF. Then Ec (resp. Eg) is 
isomorphic to the associated bundle R x CG (resp. R x Cg) defined by the 
action of G in G (resp. of  G in g) induced by the action of G in F. As for 
EF, one sees that E~ (resp. Eg) is a Lie-group bundle (resp. a Lie-algebra 
bundle): each fiber p~l (X) of E G [resp. p~(x)  of  Eg] has a natural Lie-group 
(resp. Lie-algebra) structure depending smoothly on x. For every x e M, 
rep-~(x), and s, s ' c  G (resp. u, u'~g) the group product of  r.  s and r.  s '  
(resp. the Lie product of  r .  u and r .  u') is given by r. ss' {resp. r .  [u, u'] = 
r" (uu'-u'u)}.  Further, pgl(X) can be identified with the Lie algebra of  
p~(x). 

Now denote C~(~, V) the set of  smooth sections of a smooth bundle 
over V and put C~(s  c) = C~(~ :, B) if B is the base manifold of  ~. We 

remark that in view of preceding considerations C~(Ec) has a natural 
group structure by pointwise multiplication. Then define ~ to be the group 
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C~ c C~176 By standard properties of  associated bundles one checks 
easily that there is a group isomorphism/3~ : ~1 --+ ~ such that 

fli(f)(x)=cr(x). &(x) ,  x e d o m  o-, o -~s  

Finally, consider the subset cg of II=c= L ( T ( d o m  o-), Eg) consisting of 
the families (A~) such that 

A,,(x)(hx) = tr(x) �9 ( ~ ( x ) ( h ~ ) ) ,  x ~ dom o-, tr ~ s hx ~ T~M 

for some a r  (ar c ~1, The subset cg is an affine subspace of the vector 
space I I ~ L ( T ( d o m  o-), E~) and we have an affine isomorphism 

a , (~ )~ (x ) (h~ )  = o-(x) �9 ~ ( h ~ )  

In conclusion, we have a canonical group anti-isomorphism 

and a canonical affine space isomorphism 

a =a2cq:  ~2--+ 

The right action of ~2 in ~2 can be shifted to a right action of ~q in % 

J / :  qgx ~--> ~' 

by requiring that the diagram 

~2 

~ x ~ 3  ~ 

commutes.  With some computations one finds 

./kl(A,g)o.=(A.g)o_=Ao.+g~.lVago., o-E'~, AcCg, g c ~  (1) 

where g o = g [ d 0 m ~ r  and VA:C~(EF)---~ C~(L(TM, Ev)) is the exterior 
covariant differential associated with the connection form a-l(A)~ ~2. 

3. ISOTROPY GROUPS OF THE GAUGE ACTION 

The action of the gauge group on connection froms is not at all free. 
Consider first the action ~2:qg2 • ~2 ~ ~2. The isotropy subgroups I~ = ~2, 
to e cg2, are closely related to the holonomy groups of to [for the definition 
and theory of  holonomy groups of a principal connection, see Kobayashi 



156 Berzi and Reni 

and Nomizu (1963)]. Let to be an element of  cr and denote by ~b(r), r e  R, 
the holonomy group of to at r [~b(r) is a Lie subgroup of G and, since M 
is assumed to be connected, the holonomy groups th(r) re  R, are all 
conjugated to each other in G]. Then we have the following standard result: 

Theorem 3.1. Let f e  ~2 and write f ( r ) =  r. g(r), re  R. Then f ' t o  = to, 
i.e., f is in the isotropy subgroup of ~2 at to for the action ~/2, if and only 
if the following conditions hold: 

(i) For some roe R, g(ro) belongs to the centralizer of  qS(ro) in G. 
(ii) For every piecewise smooth path A : [0, 1] ~ M with A (0) = p(ro), 

one has g(,Lo(1)) = g(ro), where Aro is the horizontal lift of  A at ro. 
Moreover, if (i) and (ii) are satisfied, then g(r) is in the centralizer of  

~b(r) V r e  R. 
A similar result can be obtained for the action ~ : cr x ~--~ ~. Let A 

be a fixed element of  cr and let IA be the isotropy subgroup of ~d for J /  at 
A. It is clear from equation (1) that g e IA iff ~Ag----0. This equation is 
equivalent to conditions similar to (i) and (ii) of  Theorem 3.1. To see this, 
notice that for r e R we can define a map Xr : ~--~ G by requiring that 

r. xr(g) = g(p(r)) ,  Vg e 

In fact, Xr is a group homomorphism.  Now let ~b(r), r e R, be the holonomy 
group at r of  the principal connection on P defined by a-~(A);  then we 
have the following analog of Theorem 3.1: 

Theorem 3.2. g e IA if and only if the following conditions are satisfied: 

(i) For some roe R, Xro(g) belongs to the centralizer of ~b(r0) in G. 
(ii) For every piecewise smooth path A:[0, 1]--~ M with A(0)=p(ro)  

one has 

Xx,o(1)(g) = Xro(g) 

where Aro is the horizontal lift (in R) of  A. 

I f  (i) and (ii) are satisfied, then for all r e R, Xr(g) belongs to the centralizer 
of  ~b(r) in G. 

Condition (i) of Theorem 3.2 tells us that if g e IA, then g is determined 
by its value at any point x e M. We have in fact a more refined result, which 
can be obtained by using the Reduction Theorem of Kobayashi and Nomizu 
(1963): 

Theorem 3.3. With the notations above for any r e R, the map Xr : fg ~ G 
induces a group isomorphism of IA onto the centralizer Y(~b(r)) of  ~b(r) 
in G. 
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4. SOBOLEV EXTENSIONS OF THE GAUGE GROUP,  OF T H E  
SPACE OF C O N N E C T I O N  FORMS, AND OF THE GAUGE 
G R O U P  ACTION 

If  we want to construct a " t rue" configuration space for a Yang-Mills 
theory as a quotient of  connections space by the gauge group action in a 
differential geometric setting, then the problem arises of  giving ~g and 
smooth manifold structures in such a way that ~3 becomes a Lie group and 
the action of fg on ~ turns out to be smooth. 

This is possible if  we admit for ~ and c~, manifold structures modeled 
on suitable classes of  locally convex vector spaces: see Cirelli and Manih 
(1985) and Abbati et al. (1987) for a realization of such a program. 

However, from the viewpoint of  a geometrization of the Yang-Mills 
theories, we need to have on the " t rue" configuration space something more 
than a smooth structure, that is, a (possibly weak) Riemannian structure. 
Thus, it seems unavoidable to introduce the so-called Sobolev extensions 
of  the gauge group ~ and of  the connections space ~. In this way one gets 
smooth manifolds modeled on (separable) Hilbert spaces and the possibility 
of  introducing (weak) Riemannian structures is left open. 

We sketch here the main points concerning the construction of Sobolev 
extensions of  the three basic ingredients of  the theory, namely ~, qg, and 
the gauge group action ~ .  We adopt  the intrinsic formulations of Palais 
(1965, 1968). 

4.1. Extension of  the Gauge Group 

A real Hilbert space structure on F = M(m, C) is defined by the scalar 
product 

(alb)F = f Re Wr[tat-l(tbt-l) *] dh(t) 

where dh is the normalized right-invariant Haar  measure on G. Notice that 
for G = SU(n) one has simply 

(a I b)v = Tr ab* 

The scalar product  induces a Riemannian structure x ,~  ([)x on EF given by 

(r'a[r'b)x=(alb)F, a,b~F, x~M, r~p-l(x) 

By Palais (1965, Chapter  IX) we can associate to the Riemannian vector 
bundle E~ a sequence (discrete Sobolev chain) HS(EF), s =0 ,  1 , . . . ,  of 
Hilbertable vector spaces which look locally like Sobolev spaces of  type L 2. 

Here the term "Hilber table"  space means a topological vector space 
whose topology can be defined by a Hilbert scalar product. But for s > 0 
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this Hilbert scalar product cannot be chosen in a canonical way. Instead, 
on H~ there is a canonical compatible scalar product (I)o induced by 
the Riemannian structure of EF and given by 

(fLg)o= f (f(x)lg(x))xdlx~, f, geH~ 

where/x ,  is the Lebesgue measure defined by the volume form of M. The 
integral converges, since H~ consists of the  measurable sections f of 
E ;  such that 

f ( f(x) lf(x))x dlz~ < eO 

Each Hs(EF) can be identified with a subset of the set of measurable 
sections of  EF; with this identification, HS ( EF ) D Hs+ ~ ( Ez ), �9 s = O, 1 , . . . .  
Moreover, HS(EF) is a dense subset of H'(EF) for s -> t, and the topology 
of H'(EF) is finer than the topology induced from H'(EF). Finally, and 
this is essential for the subsequent developments, C~176 is a dense subset 
of H'(E~) for every s = 0, 1, 2 , . . . .  On each space H'(EF) there is always 
a Hilbert scalar product (1), compatible with its topological vector space 
structure. 

Since EF isan  associative algebra-bundle, we have an induced associa- 
tive algebra structure of the set F(EF) of all measurable cross section of 
EF, the algebra operations being defined pointwise. The spaces HS(EF) are 
vector subspaces of F(Ez),  but in general are not subalgebras, i.e., they are 
not closed for pointwise multiplication. Still, one has the following result, 
which can be obtained by a straightforward generalization of Palais (1968), 
Corollary 9.7: 

Theorem 4.1. For s > l d i m  hi, HS(EF)is a Hilbertable algebra for 
pointwise multiplication and VO-  < J<-s, HJ(Ep) is a topological HS(EF) - 
module. 

By definition, ~ =  C~(Eo) c C~176 c HS(EF) for s = 0, 1, 2 , . . . .  
Hence, for every s we can consider the closure ~s of ~ in H'(EF). Now 
let k be the least integer such that k > �89 dim M + 1. We shall say that ~k+~ 
is the Sobolev extension of the gauge group qd. 

Since G is compact, it is a closed submanifold of the real manifold 
F = M(m, C). Hence, combining the "Mayer-Vietoris theorem" of Palais 
(1968, Section 4)wi th  the result of Eells (1966, p. 781), one gets: 

Theorem 4.2. G k+l is a smooth, closed submanifold of  Hk+I(EF). 
Since in a Banach algebra B the set B* of invertible elements is an 

open submanifold and f , ,~ f -~  is a diiieomorphism B*---~ B*, from 
Theorems 4.1 and 4.2 we have the following result: 
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Corollary 4.3. The extended gauge group qdk+~ is a Hilbertable Lie 
group for the manifold structure induced from Hk+~(EF). 

Remark. By Theorem 4.2 and the preceding corollary there is a well 
defined smooth map 

c~k+lxnJ(Ep)__~ HJ(EF) : (g,f)~,.~gfg-1, O<_j~ k 

One checks that the canonical scalar prooduct  ([)0 is invariant under this 
map. Further, for 0 -  < J-< k one can choose a scalar product (])j  on HJ(EF) 
having the same invariance property. Briefly, we shall say that the scalar 
products ([) j  are ~qk+Linvariant. 

Taking account of  the definition of Eg, it is not difficult to see that the 
Lie algebra of  ~k+l  c a n  be identified with Hk+I(Eg) [by the choice of  k 
and Theorem 4.1, Hk+l(Eg) has a natural Lie algebra structure, the Lie 
product being defined by [u, v] = uv - vu]. 

Moreover, the exponential map of Lie( q3 k+l) into G k+l can be identified 
with the map 

oo U n 
Hk+1(Eg) ~ O k+l, U "~ e ~ = Y ~.V 

rt=O 

4.2. Extension of  the Space of  Connection Forms 

Let 91 be the set of  differences A ' -  A", A', A" c ~. From the definition 
of c~ in Section 2 it follows that 91 is a vector space. Thus, ~ is an affine 
space over ~ and for A 6 c~ we have a bijection ("affine coordinate map") :  

hA: (~'-"> ~1 , A ' -*  A ' - A  

I f  A', A" ~ c~ and A' = ( A ' ) ,  A" = (A"), then A' - A" = (A" - A"). Again from 
the definition of c~ it follows that (A~) ~ I I L ( T ( d o m  tr), Eg) is in c~ if and 
only if the following condition is satisfied 

(c) Let U ~  ~ and o ' , t r 'CEu ;  then 
1. A~[U=A~Iu.  
2. I f  A : U ----, G is defined by tr' = o-A, then 

A~,= (~ .  A)-~A~(o -. A )+ t r .  (A-1TA) (*) 

One concludes that @1 c II  L ( T  dora or, Eg) and (/3~) e H L ( T ( d o m  o'), Eg) 
is in 91 if and only if it satisfies the condition obtained from (c) by replacing 
equation (*) with the equation 

~,= (~. A)-'~(,~. x) (**) 

This imples that there is a linear isomorphism 

y: ~ ,  --> @ = C~ Eg)) 
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such that 

y(/~) [ dom o" = / ~ ,  creW: 

Hence for each A ~ q~ we have a bijective map (affine coordinate map) 

Now we observe that there is a canonical isomorphism of vector bundles: 

L( TM, EF) ~ EF | T*M 

This induces a linear isomorphism: 

C~176 EF))--~ C~176174 T'M) 

We shall regard the preceding isomorphisms as identifications. This is useful 
since EF |  T*M has a canonical Riemannian bundle structure, as follows. 

Since M is an oriented Riemannian manifold, we have a canonical 
Riemannian bundle structure on T'M: x ,,,'., (])M.~ defined by the equation 

(,~x [/3x)Mx V(x) = ~ ^ *~3~ 

for ax, fix e T'M, where V is the volume form of M and * is the Hodge 
operator. The Riemannian bundle structure x ~ (I)x on E~|  T*M is given 
by 

(r. a| Jr. b| = (a [ b ) F ( ~  I ~x)M,x 

for a~,flx~T*M, rep-l(x), and a,b~F, with (a lb)~  being the scalar 
product on F defined in Section 4.1. 

Then we have, as above, Sobolev chains of Hilbertable space 

HS(EF| H~(Eg| s = 0 ,  1 , 2 , . . .  

Again for s >  0 there is not a canonical scalar product, while on H~174 
T'M) and on H~174 T'M) tfiere is a canonical scalar product 

(flg)o = f (f(x) lg(x)),, dtz~ (2) 

Let k>21dim M +  1 be the integer introduced in Section 4.1. Then, since 
Eg is a closed submanifold of EF, by the result of Eells (1966) quoted 
above, H*(Eg| T'M) is a closed subspace of Hk(EF@ T'M). We shall 
pose 

~k= Hk(E~@ T*M) 

Now let ~ be any element of ~. Put s c = L( T'M, Eg) ~- Ee | T*M and denote 
by F(~ 1 V) the set of measurable sections of ~: over V. Put 

g ~  F(~Idomo)lA~=U,,+Bldomo, BeDk} 
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It is clear that ~k  D c~ and it is easily seen that cck is independent of  6 6 ~. 
Put 

(~k _ (~k and ~ c  cr 

We shall say that ~k is the extended space of connection forms. We have 
a bijection 

~ :  cck__> ~k, ~,c(A(Idomo'=A~,-G~, o'~E 

such that ~el c~ = ~ ,  where ~ is the affine coordinate map y o Zc : cr ___> 
introduced above. 

The bijection ~e is itself an affine coordinate map and there is a unique 
topological structure J-~ on cCk, compatible with its affine space structure 
and such that ~ is a homeomorphism.  One sees easily that 3-~ = .~- is 
independent of  6 and cr is dense in cCk. Since the Hilbertable space @k is 
trivially a Hilbertable smooth manifold, it is clear that ~r has a uriique 
Hilbertable smooth manifold structure such that for every ~ ~ c~ the triple 
cc = (~k, ~: ,  ~k )  is a chart for this structure. We shall say that the manifold 
cCk so defined is the manifold of  Sobolev extended connection forms, or, 
simply, the manifold of  connection forms. 

In the next section we shall seee that the action of (g on ~ extends 
uniquely to a smooth action of the extended gauge group on the manifold 
c~k. 

4.3. Extension of the Gauge Group Action 

Let ~7 ~ ~ be fixed. The action ~ : ~ x ~ ---> ~ given by (1) can be shifted 
to an action J/: of  ~3 in ~ by requiring that the diagram 

.1t 

~x~J ~ ~ 

% 

is commutative. With some computations one gets 

Wc(B,g)=:B.g=g-~Bg+g-~V~g, Be@, g c ~  (3) 

Equivalently one has 

B. g = B + g-~V~,(B)g 

Now, with the notations of  Section 4.2, there is a bilinear morphism of 
vector bundles EFO(EF| T 'M)  ~ EF| T*M (where O denotes the 
Whitney sum) such that 

( r .a , r .b |  ab| xcM,  rc~-l(x) ,  a, b c F  
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This bilinear morphism induces a bilinear map (multiplication) 

F(EF)xF(EF|174 (v , f ) , , , - ,v . f  

by pointwise multiplication. Again from Palais (1968), Corollary 9.7, one 
gets the following result: 

Theorem 4.4. For v ~ Hk(E~) and f ~ HJ(EF| T 'M) ,  0 < - J <- k, vf e 
H J (EF | T* M);  moreover the multiplication map 

Hk(EF) x HJ(EF| T ' M )  --~ H~(Ee-@ T 'M) ,  (v, f )  ~ vf 

is continuous. 
Remark. By the preceding theorem there is a well-defined smooth map 

ctjk+~xHJ(EFQT, M)_..~ HJ(EF|  (g,f),,~,gfg-1 

and, as in the remark after Corollary 4.3, the canonical scalar product (I)o 
on H~174 T ' M )  is ~k+l-invariant, while on each HJ(Ev| T 'M) ,  0 < - 
J---k,  we can choose a (qk+l-invariant scalar product. 

Now consider equation (3); Vc: C~(EF)---~ C~174 is a 
differential operator of  order 1, then its extends by continuity to a continuous 
linear map Hk+I(Er)---~Hk(EF| (Palais, 1965, 1968). This 
extension will be denoted again by Vc. Moreover, the multiplication map 
of Theorem 4.4 is the unique continuous extension of the corresponding 
multiplication for spaces of C ~~ sections, Hence we conclude that N~ extends 
uniquely to a continuous action @k x ~kq-1 ~ ~k, which we shall denote 
again by No, so 

JC'v(B,g)=:B.g=g-lBg+g-lVvg, gEC~ k+l, B E ~ )  k (4) 

Then we can define a continuous action of ~k+l on (~k, denoted again At, 
by requiring that the diagram 

Ag 
(~k X ~k+l > (~k 

~ k x ~ k §  N~ >~k 

commutes. The action At so defined will be said to be the extended gauge 
group action; it is the unique continuous extension of At : ~ x ~3 ~ ~. From 
the preceding commutative diagram one obtains for At the expression 

At(A, g)~=: (A.  g)~ = A~+gS1VAg~ (5) 

A C ~  'k, gEC~ k+l , g~ = g]dom o', t r e e  

where 

VA: Hk+I(EF) ---~ Hk(EF| T-M) 



Weak Riemannian Structures on Gauge-Group Orbits 163 

is the continuous linear map given by 

VA(W)=~o(A)w-w~c(A)+Vc(w) ,  w~Hk+~(EF) 

This map is in fact independent of  ~ and for A e c~ one has ~a = V~TA- 
Since k > �89 dim M + 1, from the Sobolev embedding theorem [in an 

intrinsic formulation, see Palais (1968)] it follows that there are the 
inclusions 

qJ'+ '  c C2(EF), ~ t ' c  C ' ( G |  ) 

and the corresponding inclusion maps are continuous. Hence, by 
definition of ~k (compare Section 4.2), if A c  ~k, then A~e 
CI(Eg Idom or| T*(dom o-)). Moreover, again by definition of cs one sees 
that the A~ satisfy analog of  condition (c) of  Section 4.2. From this one 
sees that if a '  is the inverse of  the map a : cr c~ of Section 3, then ~ '  
can be extended to a map ~,k : cck ~ cck, where cs consists of  g-valued 
1-forms on R of class C ~, which satisfy the same conditions defining the 
(smooth) connection forms of P. Then for any A e  c~k, c~,k(A) defines as in 
the smooth case a covariant differential V A: C CO(EF) ~ C~(EF | T* M).  The 
~r a is a generalized differential operator in the sense of  Cantor (1981), and, 
under our assumption on k, it can be extended to a continuous linear map  
VA: Hk+I(EF)~ Hk(EF@ T 'M) .  Thus, recalling the map ~a  introduced 
in (5), we have VA = VA for all A E cCk. 

Further, given to ~ qgk and r c R, one can define the holonomy group 
~b(r) of  to as in the C ~ case and the theory of  holonomy groups of a smooth 
connection form can be applied to holonomy groups of  to e cr Thus, the 
results of  Section 3 concerning the relations between isotropy groups and 
holonomy groups can be extended to the action ~kX ~k+~___~ cCk here 
defined. 

In particular, consider for any r c R the homomorphism Xr : ~k+~ ~ G 
such that r" xr(g) = g ~ p(r ) ;  if IA is the isotropy subgroup of ~3 k+~ at A c cs 
and & (r) is the holonomy group of to = a'k(A), then Xr maps isomorphically 
IA onto the centralizer ~ (& ( r ) )  of ~b(r) in G. Here IA is a subgroup of a 
Lie group; it is clear that it is a compact  subgroup of  ~3 k+~. Then it is a Lie 
subgroup of cgk+~ and Xr: Ia ---~ Y(4~(r)) is an isomorphism of  Lie groups. 
Notice that the center Y ( G )  of G is always a (normal) Lie subgroup of 
3((&(r)). Then la always contains as normal Lie subgroup X;~(~(G)). One 
sees easily that geXr t (~ (G) )  if[ g(r) c~ ( r"  G) = r. ~(G)  for every r~  R. 
Hence X/~(~(G))= ~(~k+~). It follows that, unless G has trivial center, 
the action of  ~3 k§ in ~k is never free [because IA contains ~(~k+~)]. 

A connection A~ c~k is said to be generic if Ia=~(~3 k+~) ~-~(G). In 
general, the set c~k of generic connections is a proper subset of  cck. Still, it 
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can be proven that ~k is an open dense subset of (~k (see Kondracki and 
Rogulski, 1983). 

5. ORBIT MANIFOLDS INDUCED BY THE EXTENDED GAUGE 
GROUP ACTION 

One cannot expect, in general, that there exists the orbit manifold for 
the action of  r on ~k. Thus, to define a gauge-free configuration manifold 
for Yang-Mills theories, one way is to restrict the action of ~k+l to the 
submanifold ~0 kC ~k of generic connections; if ~ is the center of cgk+l 
then the induced action of ~k+~/~ on ~o k is then free and the orbit manifold 
~ko/(~k+~/~) does exist (Narasimhan and Ramadas, 1979; Mitter and 
Viallet, 1981). Another way, more suitable for physical applications, is to 
introduce the subgroup ~k+~ c ~k+l of pointed gauge transformations (i.e., 
fixing a base point * of ~k). NOW ~k+l ~ .  acts freely on the whole manifold 
~k and again it can be shown that the orbit manifold k k+~ / ~ ,  exists 
(Narasimhan and Ramadas, 1979; Mitter and Viallet, 1981). A more satisfac- 
tory approach seems to be the one introduced by Kondracki and Rogulski 
(1983). Here the global structure of the topological space ~k/~k+~ is 
considered and it is shown that this space admits a stratification into 
Hibertable manifolds that are the orbit manifolds for the action of ~k+l on 
the members of a countable family of ~k+~-invariant submanifolds of ~k, 
including the open submanifold ~0 k of generic connections. This result can 
be improved; in fact, the above orbit manifolds carry a natural weak 
Riemannian structure, as will be shown in the next section. 

In this section we report the main steps for the construction of  these 
orbit manifolds in the framework introduced in the preceding sections. We 
have 

3(={g~qg:  VxcM, g(x)=s, s 6 Y ( G ) }  (6) 

by identifying :~(G) with a subgroup of (EG)x, ~'x~ M. 
We shall need the following decomposition theorem: 
Theorem 5.1. For A ~ cog one has 

~k = V a( Hk+~( Eg) )~ Ker V* 

where the closed subspaces Va(Hk+*(Eg)) and Ker V* of ~k are orthogonal 
for the H~ product. [The notion of formal adjoint is given here for 
a generalized differential operator in the sense of Cantor (1981).] 

Remark. For A c  r162 the decomposition of the theorem is a standard 
result of the theory of elliptic operators, since in this case Va is a differential 
operator with injective symbol. For A c cog _ ~ the decomposition follows 
directly from the generalization of these results to (elliptic) differential 
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operators with continuous coefficients [Cantor (1981), Theorem 3.13]. The 
meaning of this decomposition theorem becomes clear by considering the 
identification map 

(~AIX l~k) " T~A: T~k__> ~k)< ~k (7) 

(which does not depend on A ~ cck chosen). 
With this identification, if we pose 

fa: q~k+l _+ c.gk, g " "  A" g 

we have 

LfA: Hk+l(Ee,) " ~  TefA=VA 

[for the identification Te~ k+l= Hk+l(Eg) see Section 4.1]. Then Theorem 
5.1 tells us that the image of  T~fa in S0 k admits a topological supplement 
(and the same holds for TjA, g ~ ~k+,). Incidentally, we remark that, thanks 
to (7), to give cck a Riemannian structure it is sufficient to define a scalar 
product on ~k: in Section 4.2 we have seen that there exists a canonical 
~k+'-invariant scalar product on H~174 T 'M)  and that we can also 
choose a ~k+'-invariant scalar product on Hk(Eg| so we shall 
regard qgk as a weak or strong Riemannian manifold for the metrics associ- 
ated with these products. 

Now we quote two results [see, for instance, Kondracki and Rogutski 
(1983) Theorems 2.4.9 and 3.2.1) on the action of  ~k+, on ~k technically 
relevant in connection with the slice theorem below. 

Theorem 5.2. The action of ~k+, on ~k is proper. 

One can give a direct proof  of this result based on ordinary differential 
equations methods. 

Theorem 5.3. VA c c~k the orbit A- (~k+, is a submanifold of c~k. 

TO be more precise, it is possible to see that VA ~ cCk the map 

iA : ~k+l/i  A ----> (~k, {O} ~ A -  t9 

is a diffeomorphism onto A- ~k+,. 
By using Theorems 5.2 and 5.3 we have the following "slice theorem" 

[see Kondracki and Rogulski (1983), Theorem 3.3.4]: 
Theorem 5.4. VA ~ c~k there exists a tubular neighborhood of A .  ~k+~ 

for the action of ~k+~ on C k. 

We give an explicit expression for this tubular neighborhood. Let 

NA={(A',X')c(TC~kI(A. ~k+~)).~A. ~k+~X ~k : 

(X'  I Y)0=0,  VY~ ra (A" ~k+l)= VA C ~k)  

N~={(A' ,X ' )eNA:  (X' IX')k  < ~'2}, e > O  
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Then (A, N~, exp[ N~),  where A is the vector bundle A = (NA, ~', A" ~dk+l) 
and exp is the exponential map associated with the strong metric on ~k, is 
a tubular neighborhood for the action of ~qk+l on ~g. 

Now let 

Cg~s)={AE~g: IA ~ (S)} 

where S is any compact Lie subgroup of  ~gk+~ such that there exists at least 
one gauge potential A ~ egg with isotropy group S, and (S) is the conjugacy 
class of S in ~qk+~. Then ~g~s) is a submanifold of egg, clearly ~k+~_invariant. 
A slice theorem holds as well for each submanifold Cg~s). In this case a 

N ~ tubular neighborhood of A ~ Cg~s) is given by (v, NA(S), expl A(S)), with 
P = (NA(s), ~, A" ~k+m) and 

N A(s) = {(A', X')  E NAII(A..X, ) ~ (S)} 

with I(A,X,) the isotropy group of  (A', X')  for the canonically induced action 
of ~k+l on T ~  k (N~(s) as above). 

Moreover, let H A be defined by NA(S)I{A} ={A}x  HA; then there is a 
smooth map 

X: NA(s)--> A" ~k+~xHA , ( A ' , X ' ) , , ~ , ( A ' , X )  

where X is the only element such that g - ~ X g = X '  for any g~ ~k+~ s.t. 
A" g = A'. Next let zr: ~ s )  ~ ~s)/~dk+~ be the canonical projection and let 

UA = exp(N~,(s)) 

Then we have a smooth map 

OA: zr(exp(N~(s)))- :  7"r(UA) ~ HA 

A "  qgk+l ,,~ (pr2 ~ X ~ (expl N~(s)) -l) 

From the properties of X one concludes (as in the finite-dimensional case) 
the following result: 

Theorem 5.5. The orbit manifold ~ s )  = ~s)/~qk+l exists. Furthermore, 
('rr(Ua), ~A, HA(S))Ac~s)is an atlas of ~ s ) .  

6. W E A K  R I E M A N N I A N  S T R U C T U R E  O N  T H E  O R B I T  

MANIFOLDS ~ (s) 

In this section we define for the case G = SU(n)  on each ~ s )  a weak 
metric that is naturally related to the "kinematic" part of the Lagragian 
considered in the heuristic formulation of Yang-Mills theories (see, e.g., 
Babelon and Viallet, 1981). 
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Let ~r: ~s)---) ~ s )  be the projection; since zr is a submersion, we can 
introduce the vector subbundle Ker TTr of T ~ s )  (see Bourbaki, 1971, 7.5.5). 
Denoting by the same symbol the total space of Ker T~-, we have 

Ker Tzr= U {A}x TA(A" ~k+l) 
A E C~s ) 

The usual proof  of the existence of the normal bundle for strong Riemannian 
manifolds fails in general in the case of  weak ones. So we shall give in 
some detail the proof  of  the following: 

Theorem 6.1. The triple ~, = (Ker T~ -lo, ~ [Ker  Tzr L0, ~s ) ) ,  2 where 

Ker TTr •176 = U k {A} x (TA(A. G k + l )  a-~ 
A~ q~(s) 

is a vector subbundle of  TOgas). Briefly, Ker Tcr has a weak normal bundle. 
Proof. Let ~ : TC~ k --~ ~k • ~ k ,  (A, X)  ,,~ (A, ~AX) be the canonical 

identification and 

W ( s ) =  U {A}xS~A(TA~S) )=:  U W<S)A 
AcCeSS) a~ C~s) 

OF(s) = u {A}•  �9 ~ k + l ) ) = :  U {A}x V A 
ae  ~'s) A~rg~s) 

Since TC~s) is a submanifold of  TCr k and Ker T~r is a submanifold of  
TCC~s), one can give W(s) and ~ a differentiable structure such that (i) 
or maps diffeomorphically T~s )  on W(s) and Ker T~- on OF(s), and (ii) 
OF(s) is a submanifold of W(s), which in turn is a submanifold of ~k X ~k. 

Moreover, 

~A(TA(A  " ~k+I) •176  ~k+l)] •176 A~ (~k 

But to prove that ~, is a subbundle is equalent to showing that 

~(s): TC~s) --~ Ker Tcr, (A, X)  ~, (A, ~(S)A(X)) 
[where ~(S)A: TAc~S)-'-) TA(A" ~k+~) is the weak orthogonal projection 
with kernel TA(A. ~k+~) •176 is a morphism of  vector bundles. This, in turn, 
is true iff P(s) = ~ ~ ~(s) o ( ) [  TC~s)) -~ is a morphism of vector bundles. 
Now consider the inclusion maps ~ : W(s) --, ~g~s) x @k and 
~'" OF(S) ~ (~S) X ~k,  which are smooth because W(s) and OF(s) are submani- 
folds. It is easy to check that one has 

P~ ~= ~'~ P(s) 

where P:  C~s ) x @k .... C~S) • ~k is defined by P(A, X)  = (A, PA(X)), PA 
being the weak orthogonal projection with range VA in ~g. One concludes 
that P(s) is smooth iff P is smooth. 

210 denotes weak orthocomplementation. 
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Lemma 6.2. The map 

r~s) --~ L(~k, ~k), A ~ PA 

is smooth [uniform topology on L(~ k, @k)]. 
Proof. The proof is in several steps. (a) First one observes that VA E 

(~gS), PA : ~ k  ~ ~k  may be written in the form 

PA = V AGAV*A (8) 

where GA is a kind of Green operator for the "Laplacian" AA= 
V*VA: Hk+l(Eg) ---> Hk+l(Eg). In fact, since AA is elliptic self-adjoint, one 
has the following decomposition: 

Hk+I(E,) = AA(Hk+'(G))@ Ker AA [ H k - ' ( G )  

=: �9 

generalizing the classical one (Cantor, 1981, Theorem 3.13). Hence, if we 
pose ~ + 1 =  Ker AA ]Hk+l(Eg) and A~ = AA I (Y~k+l) 1 [the orthogonal com- 
plement of YE k+l is taken in Hk+l(Eg)], then Ak is an isomorphism onto 
o//.~-~ (by open mapping theorem). Next, define 

GA : ~/-k-I ~ (ygk+,)- (as above) 

GA = (A~) -I 

Then (8) is readily verified by checking that PA and ~AGA~*A agree on the 
subspaces KerV*AI~ k and VA(Hk+I(Eg)) of ~k and so they agree on the 
whole ~k (Theorem 5.1). 

k ~ k + l  (b) The following construction is useful. Let ,4 c C~(s), ,4. its orbit 
in c~s). Since i~: ~k+1/Ii,---~ ,~. ~k+l is a diffeomorphism (Theorem 5.3) 
and (~k+l  er', ~1k+1/I,~, I,Q is a principal bundle (Bourbaki, 1971, Theorem 
6.2.4), there are an open neighborhood T of ,4 in ,4. ~k+~ and a smooth 
map ~: T ~ ~k+l such that 

We shall pose 

(c) 

A- ~(A') = A', VA 'e ,4 .  ~jk+, 

A: exp(N~(s)l T) = 6--~ ~k+l 

,~  (se off o (exp] N~A(S))-')(,4) 

(~': N~(s) --~ ,4" ~d k+l) 

With some calculations one verifies the following formulas: 

Adk• c ~ k •  t ~ k + l  (~k = r.q. A , . O -  , V't~e VA'E 

(9) 

(10) 
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where 

Adk.~.(O): Hk=/l(Eg)-~ Hk• 

X ~.~ OXO -i,  VO c ~k+~ 

YC k+l = Lie(IA.), V A ' 6  cog a' (11) 

In particular, ' r  ~ 6 ,  

A d k • 1 7 7  ~ (10)~k• , ( 1 1 )  . ~.'~ JJ~".A' I -- ~'"A'.X(A') = Lle(IA,.X(A'V') (12) 

Finally one checks, by using tubular neighborhood properties, that 

I A , . A ( A , )  -1 -~- I ~  (13) 

So, from (12) and (13), it follows that 

A d ~ l ( h  ( a ' ) ) ( g ~ ,  ~1) = ~ •  

and, by ~k+l-invariance of weak and strong inner products on Hk• 
we can conclude, VA'c  ~, 

Adk_l(A (A'))(~'kA: 1) = 7/'~- -1 
(14) 

Adk+,(A (a'))[(Yg~+I) • = (Y~+')• 

(d) By (8) part (c) we can write 

Pa, = Va ,~ Adg+I(A (a ' )  -1 ~ P (gJ - ' ?  ~ Adk+I(A (a ' ) )  o Ga, 

o p.~_~., 1o Adk_~(h (a ' )  -1) o Pv~- '~ Ad~_,(A (A')) o V*, (15) 

where 

p ~  , : Hk - I (Ee )  ~ ~/.~-1 

is the orthogonal projection onto ~}- l ,  [and analogously for p~.%1 and 
p(~+,) l ] .  It is now easy to see that v : O --~ L ( ~  k, @k), A'  ~ PA', iS smooth. 
In fact, the smoothness of 

: G--> L ( ~  k, Hk-1(Eg)) ,  A ' , ~  V*, 

: ~ - - ~ t ( H k + l ( E ~ ) , @ k ) ,  A ' , ~  Va, 

follows directly from the explicit expressions of Va, and V*,; on the other 
hand, for the map 

,v: Iff ~ L(  ~//'~ - l  ' (ff-L~ 1) • 

A ' , ~  P(~+,)~ o Adk+l(A (A')) o GA, 

o Vv1-~ o A d k _ l ( h ( A ' )  -1)  o ivy- '  

where 

�9 w'k_-I Hk- I (Eg)  l~ - l  : r A ---> 
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is the inclusion map, one can observe that v = Inv o v', where 

v ' :  C---~ L(~k+~) ", ~ffk-1) 

A', ,~ Pw~-' ~ Adk_,(h(A'))  o A A, o Adk+,(A(A') - '  o i(~+,)~ 

and 

i(~e~+,)~: (Y(~+')• --o Hk+l(Eg) 

is the inclusion map, and Inv is the smooth map T ,,~- T -~ defined on the 
open set of  the invertible operators in L ( ( ~ + ' )  • ~k-~). 

This completes the proof  of  Theorem 6.1 and now we are ready to 
construct a weak metric on ~ k (S). Namely, if there exists a map 

such that 

where 

(16) 

7, SOME REMARKS ON THE GEODESIC FLOW 

7.1. Geodesic Spray 

The weak metric set up in Section 6 is naturally related to the 
"kinetic" part  of  the Lagrangian considered in the heuristic formulation of 
Yang-Mills theories (Babelon and Viallet, 1981) and so it is worthwhile to 
study the integral flow of its geodesic field. The local expression for 
g ' :  ~ s )  ~ M e t ( T ~ s ) ) ,  

g'(a)((a, X)(a, Y)) = (pr2 o g)((a, X),  (a, Y)) 

is the weak metric induced on Cr from (~k, then this map is unique and 
smooth, fiber-preserving, and bilinear on each fiber. Such a map does exist, 
as one verifies by setting, for a fixed a ~ ~ k (s) and any A 6  ~'-~(a) 

g( Tzr(A, X),  Tzr(a, Y)) = (or • l u )~ ( (a ,  X) ,  ( a ,  Y)), 

V(A, X) ,  (A, Y) 6 u I A 

and by checking that it is a well-posed definition because it does not depend 
on A ~ ~r-l(a). We have thus proven the following result: 

Corollary 6.3. There exists one and only one metric ~ on ~ s )  satisfying 
(16). We shall consider ~ s )  as a (weak) Riemannian manifold for ~. 
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in a chart (r ~A, HA) for ~/~k and the canonically induced chart on ( s )  

T ~ s )  x ~s) T~(k) is 

('3: H~A ---> L2( HA) (=: bilinear forms on HA) 
(17) 

cg( X)(  Y, Z)  = ( Y -  Pexp(a,x) r[ Z - Pexp(A,x)Z)o 

(principal part). This equation can be obtained by direct computation, 
taking account of the equation 

~r A,( TA, C~S)) = VA,(~ H A, VA' c c~s) 

Equation (17) gives, in a standard way, the equation for the geodesic spray 
f :  T~s)---> T(T~s ) ) .  Locally, if we pose 

T( Tt~A) o f o T~b A ' = ((prl, F,)( pr, , F2)) 

F1, Fz: H~ • HA--~ HA 

then F~ and F2 must satisfy, VZ~, Z2 ~ HA, the equation 

D~dlx(F,(X, Y))( Y, ZI) - D ~ l x ( Z l ) (  Y, F~(X, Y) 

+ ~(X)(Z~, F2(X, Y)) - ~(X)(F,(X,  Y), Z2) 

= -�89 D(~ Ix (Z,)( Y, Y) - ~(X)(  Y, Z2)(X, Y) c T~A( T[~r(UA)]) 

=H~•  (18) 

In (18) the left-hand side is just the local expression of the canonical 2-form 
on T~t~s). Since this is a weak 2-form (Chernoff and Marsden, 1974, p. 9, 
Theorem 5), it is not granted a priori that (18) has solutions F~(X, Y) and 
F2(X, Y) for every (X, Y) ~ H~ • HA. Attempting to solve directly equation 
(18) leads to considerable computational difficulties, which can be avoided 

�9 by observing that at the points (0, Y) ~ (0} • HA, F, and F2 are simply given 
by F~(0, Y ) =  Y and /72(0, Y ) = 0 .  One concludes that there is a map 
f :  T~s)---> T ( T ~ s ) )  (defined everywhere in T ~ s ) )  satisfying pointwise 
the standard geodesic spray equation; namely 

T(T~A) ofo T~O~J(0, Y) = ((0, Y)( Y, 0)) 
(19) 

VYE HA, VAE ~s )  

Now we claim that the map f is smooth, thus giving an everywhere defined 
geodesic spray. Again a direct proof of the smoothness of f is somewhat 
difficult at this stage, since the transition functions between the charts 

( T(T~A), T( T(p(UA)), H~A X H A X HA x HA) 

and the whole local expression of f are not simple. The smoothness of f 
will follow more easily as a by-product of the subsequent developments. 
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7.2. Geodesic Flow 

Now we look for C ~ paths in T~s) ,  u: Icg~---, T~s) ,  such that 
Tu(E(t)) =f(u(t)) Vt~ I (E =canonical  vector field on R). Let I be an 
open interval in R and let 

~: I---~ q~k ~(t)=A+tz,  r e ~  (s) 

v: I ~  TC~s) v(t) = T~(E(t)) 

v: I--* ~k (s) v=zr~ 

~: I--~ T ~ s )  f~(t) = Tv(E(t))= T1r(v(t)) 

By some machinery [working pointwise on the fibers of  T ~ s )  and not on 
T(T~s) )  to use ~A(TAC~S))= VAGHA], one has 

Tf~(E(t)) =f(~3(t)) (20) 

From (20) one concludes that f is smooth. In fact, since 

. r  U { A } x H A c  ~k(s) X ~ s )  
A ~ C~ ~s) 

is a submanifold of  ~ s ) X ~ s ) ,  the inclusion map ~: ~(v)- -~  ~ s ) •  ~k 
induces a C ~ map 

T~': TJ~(v) ---> ( (~s )x  ~)k) X (~k X ~k)) 

SO 

~: ~(,,) ~ ((~s) x ~ )  x ( ~  x ~ ) )  

(A, X) ~ ((A, X), (X, 0)) 

is a smooth vector field on 5~(v). Now, as it is easy to see, by using (20), 

r 2 ~  ~ (WS-'  ~ T ~  -1 o f o  5~) = f o  r~r[ v 

Hence f is smooth and our claim on it is proven. On the other hand, (20) 
is the starting point for the following result of  classification of the geodesics 
o f f :  

Proposition 7.1. (i) Let t~: R --* ~g, t~(t) = A + t~, A ~ ~ s ) ,  and ~(?) ~ HA 
(~ is the extension to ~ of y: ~ - - ~  ~ ;  see Section 4). Let us define 
5 = {t e ~: t~(t)e Cr and I the connected component  of  5 containing 0. 
If I # {0}, then v -- ~ro t3[ I :  I ~ ~ s ,  is a geodesic path in ~ s ) .  (ii) Con- 
versely, let v:J--~ ~ s )  be a geodesic path in ~ s )  Then there exists 
t3 : J --* ~ s ) ,  15(t) = A + t'~, such that v = ~r o ~3. 
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7.3. The Generic Stratum 

Since the generic stratum ~ k  is open and dense in ~ k  (Kondracki 
and Rogulski, 1983, Theorem 4.3.5), it is the natural candidate for the true 
configuration space of a Lagrangian Yang-Mills theory. So it is of interest 
to study its geodesic properties. Unfortuantely, a simple analysis of slice 
properties of  cck gives: 

Theorem 7.2. ~ k  is not geodesically complete. 

One sees this at once. In fact, for A c cs S ~ Z, 

W = (exp [ N~)-l(C~ok n exp N~) n ({A} • O g) 

is open in { A } x ~  k. Hence, choosing ( {A}xX)~W,  t---~v(t)= 
exp({A} x tX)= A+ tX is a geodesic path in cog such that v (0)=  A ~ C~s ) 
and v(t) c C~ok for[t  -- 1[ sufficiently small. A measure of this noncompleteness 
is given by the following theorem, which we quote without proof: 

Theorem 7.3. Let zT:R--~ c~k, ~(t)=A+t~, A~ c~0k, q(~)~ HA, I # { 0 }  
(see Proposition 7.1). Then the set A = {t 6 R: g(t)Z ~o k} is nowhere dense 
in R. 

These results seem to indicate that assuming the generic stratum as 
configuration space could be not justified in general. A better understanding 
of the meaning of nongeneric strata is presumably required to clarify the 
rather unpleasant feature that the configuration space cannot in general be 
described by a simple smooth manifold. 
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